Trust and distrust in big data recommendation agents

Heverton Roberto de Oliveira Cesar de Moraes, Otavio Sanchez, Susan Brown, Bin Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Big data technology allows for managing data from a variety of sources, in large amounts, and at a higher velocity than before, impacting several traditional systems, including recommendation agents. Along with these improvements, there are concerns about trust and distrust in RA recommendations. Much prior work on trust has been done in IS, but only a few have examined trust and distrust in the context of big data and analytics. In this vein, the purpose of this study is to study the eight antecedents of trust and distrust in recommendation agents' cues in the context of the Big Data ecosystem using an experiment. Our study contributes to the literature by integrating big data and recommendation agent IT artifacts, expanding trust and distrust theory in the context of a big data ecosystem, and incorporating the constructs of algorithm innovativeness and process transparency.

Original languageEnglish (US)
Title of host publication40th International Conference on Information Systems, ICIS 2019
PublisherAssociation for Information Systems
ISBN (Electronic)9780996683197
StatePublished - Jan 1 2020
Event40th International Conference on Information Systems, ICIS 2019 - Munich, Germany
Duration: Dec 15 2019Dec 18 2019

Publication series

Name40th International Conference on Information Systems, ICIS 2019

Conference

Conference40th International Conference on Information Systems, ICIS 2019
CountryGermany
CityMunich
Period12/15/1912/18/19

Keywords

  • Big data
  • Distrust
  • Recommendation agent
  • Trust

ASJC Scopus subject areas

  • Computer Science Applications
  • Information Systems

Fingerprint Dive into the research topics of 'Trust and distrust in big data recommendation agents'. Together they form a unique fingerprint.

Cite this