Ultra-low noise, large-area InGaAs Quad photoreceiver with low crosstalk for laser interferometry space antenna

Abhay Joshi, Shubhashish Datta, Jim Rue, Jeffrey Livas, Robert Silverberg, Felipe Guzman Cervantes

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations

Abstract

Quad photoreceivers, namely a 2 × 2 array of p-i-n photodiodes followed by a transimpedance amplifier (TIA) per diode, are required as the front-end photonic sensors in several applications relying on free-space propagation with position and direction sensing capability, such as long baseline interferometry, free-space optical communication, and biomedical imaging. It is desirable to increase the active area of quad photoreceivers (and photodiodes) to enhance the link gain, and therefore sensitivity, of the system. However, the resulting increase in the photodiode capacitance reduces the photoreceiver's bandwidth and adds to the excess system noise. As a result, the noise performance of the front-end quad photoreceiver has a direct impact on the sensitivity of the overall system. One such particularly challenging application is the space-based detection of gravitational waves by measuring distance at 1064 nm wavelength with ∼ 10 pm/√Hz accuracy over a baseline of millions of kilometers. We present a 1 mm diameter quad photoreceiver having an equivalent input current noise density of < 1.7 pA/√Hz per quadrant in 2 MHz to 20 MHz frequency range. This performance is primarily enabled by a rad-hard-by-design dualdepletion region InGaAs quad photodiode having 2.5 pF capacitance per quadrant. Moreover, the quad photoreceiver demonstrates a crosstalk of < -45 dB between the neighboring quadrants, which ensures an uncorrected direction sensing resolution of < 50 nrad. The sources of this primarily capacitive crosstalk are presented.

Original languageEnglish (US)
Title of host publicationHigh Energy, Optical, and Infrared Detectors for Astronomy V
DOIs
StatePublished - Dec 1 2012
Externally publishedYes
EventHigh Energy, Optical, and Infrared Detectors for Astronomy V - Amsterdam, Netherlands
Duration: Jul 1 2012Jul 4 2012

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume8453
ISSN (Print)0277-786X

Other

OtherHigh Energy, Optical, and Infrared Detectors for Astronomy V
CountryNetherlands
CityAmsterdam
Period7/1/127/4/12

Keywords

  • InGaAs photodiodes
  • Large area photodetector
  • Quadrant photodetector
  • Very long baseline interferometer

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Ultra-low noise, large-area InGaAs Quad photoreceiver with low crosstalk for laser interferometry space antenna'. Together they form a unique fingerprint.

Cite this