Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter-scale slopes of candidate Phoenix landing sites

R. L. Kirk, E. Howington-Kraus, M. R. Rosiek, J. A. Anderson, B. A. Archinal, K. J. Becker, D. A. Cook, D. M. Galuszka, P. E. Geissler, T. M. Hare, I. M. Holmberg, L. P. Keszthelyi, B. L. Redding, W. A. Delamere, D. Gallagher, J. D. Chapel, E. M. Eliason, R. King, A. S. McEwen

Research output: Contribution to journalArticle

196 Scopus citations

Abstract

The objectives of this paper are twofold: first, to report our estimates of the meter-to-decameter-scale topography and slopes of candidate landing sites for the Phoenix mission, based on analysis of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images with a typical pixel scale of 3 m and Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) images at 0.3 m pixel-1 and, second, to document in detail the geometric calibration, software, and procedures on which the photogrammetric analysis of HiRISE data is based. A combination of optical design modeling, laboratory observations, star images, and Mars images form the basis for software in the U.S. Geological Survey Integrated Software for Imagers and Spectrometers (ISIS) 3 system that corrects the images for a variety of distortions with single-pixel or subpixel accuracy. Corrected images are analyzed in the commercial photogrammetric software SOCET SET (®BAE Systems), yielding digital topographic models (DTMs) with a grid spacing of 1 m (3-4 pixels) that require minimal interactive editing. Photoclinometry yields DTMs with single-pixel grid spacing. Slopes from MOC and HiRISE are comparable throughout the latitude zone of interest and compare favorably with those where past missions have landed successfully; only the Mars Exploration Rover (MER) B site in Meridiani Planum is smoother. MOC results at multiple locations have root-mean-square (RMS) bidirectional slopes of 0.8-4.5° at baselines of 3-10 m. HiRISE stereopairs (one per final candidate site and one in the former site) yield 1.8-2.8° slopes at 1-m baseline. Slopes at 1 m from photoclinometry are also in the range 2-3° after correction for image blur. Slopes exceeding the 16° Phoenix safety limit are extremely rare.

Original languageEnglish (US)
Article numberE00A24
JournalJournal of Geophysical Research E: Planets
Volume114
Issue number3
DOIs
StatePublished - Mar 20 2009
Externally publishedYes

ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint Dive into the research topics of 'Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter-scale slopes of candidate Phoenix landing sites'. Together they form a unique fingerprint.

  • Cite this

    Kirk, R. L., Howington-Kraus, E., Rosiek, M. R., Anderson, J. A., Archinal, B. A., Becker, K. J., Cook, D. A., Galuszka, D. M., Geissler, P. E., Hare, T. M., Holmberg, I. M., Keszthelyi, L. P., Redding, B. L., Delamere, W. A., Gallagher, D., Chapel, J. D., Eliason, E. M., King, R., & McEwen, A. S. (2009). Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter-scale slopes of candidate Phoenix landing sites. Journal of Geophysical Research E: Planets, 114(3), [E00A24]. https://doi.org/10.1029/2007JE003000