Ultrashort dynamic response of vertical cavity surface-emitting quantum well lasers

Frank Jahnke, H. Christian Schneider, Stephan W. Koch

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Results of microscopic modeling of semiconductor vertical-cavity surface-emitting lasers (VCSELs) are discussed. The treatment of the laser as a nonequilibrium many-body system provides a detailed understanding of the various processes that determine the laser output and the electron-hole-plasma excitation. It is shown that the transient gain dynamics are strongly influenced by nonequilibrium carrier effects. These gain dynamics together with the cavity design determine the delayed onset and the temporal and spectral shape of the laser output. The theory is evaluated to investigate how the laser output properties can be controlled in terms of (1) excitation conditions of the VCSEL, (2) the mirror design, which allows us to change the cavity quality and the resonance frequency, and (3) the number and position of semiconductor quantum wells as active material.

Original languageEnglish (US)
Title of host publicationProceedings of SPIE - The International Society for Optical Engineering
EditorsWeng W. Chow, Marek Osinski
Pages322-328
Number of pages7
StatePublished - Jan 1 1996
EventPhysics and Simulation of Optoelectronic Devices IV - San Jose, CA, USA
Duration: Jan 29 1996Feb 2 1996

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume2693

Other

OtherPhysics and Simulation of Optoelectronic Devices IV
CitySan Jose, CA, USA
Period1/29/962/2/96

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Ultrashort dynamic response of vertical cavity surface-emitting quantum well lasers'. Together they form a unique fingerprint.

Cite this