USA National Phenology Network’s volunteer-contributed observations yield predictive models of phenological transitions

Theresa M Crimmins, Michael Crimmins, Katharine L. Gerst, Alyssa H Rosemartin, Jake F. Weltzin

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Purpose: In support of science and society, the USA National Phenology Network (USA-NPN) maintains a rapidly growing, continental-scale, species-rich dataset of plant and animal phenology observations that with over 10 million records is the largest such database in the United States. The aim of this study was to explore the potential that exists in the broad and rich volunteer-collected dataset maintained by the USA-NPN for constructing models predicting the timing of phenological transition across species’ ranges within the continental United States. Contributed voluntarily by professional and citizen scientists, these opportunistically collected observations are characterized by spatial clustering, inconsistent spatial and temporal sampling, and short temporal depth (2009-present). Whether data exhibiting such limitations can be used to develop predictive models appropriate for use across large geographic regions has not yet been explored. Methods: We constructed predictive models for phenophases that are the most abundant in the database and also relevant to management applications for all species with available data, regardless of plant growth habit, location, geographic extent, or temporal depth of the observations. We implemented a very basic model formulation—thermal time models with a fixed start date. Results: Sufficient data were available to construct 107 individual species × phenophase models. Remarkably, given the limited temporal depth of this dataset and the simple modeling approach used, fifteen of these models (14%) met our criteria for model fit and error. The majority of these models represented the “breaking leaf buds” and “leaves” phenophases and represented shrub or tree growth forms. Accumulated growing degree day (GDD) thresholds that emerged ranged from 454 GDDs (Amelanchier canadensis-breaking leaf buds) to 1,300 GDDs (Prunus serotina-open flowers). Such candidate thermal time thresholds can be used to produce real-time and short-term forecast maps of the timing of these phenophase transition. In addition, many of the candidate models that emerged were suitable for use across the majority of the species’ geographic ranges. Real-time and forecast maps of phenophase transitions could support a wide range of natural resource management applications, including invasive plant management, issuing asthma and allergy alerts, and anticipating frost damage for crops in vulnerable states. Implications: Our finding that several viable thermal time threshold models that work across the majority of the species ranges could be constructed from the USA-NPN database provides clear evidence that great potential exists this dataset to develop more enhanced predictive models for additional species and phenophases. Further, the candidate models that emerged have immediate utility for supporting a wide range of management applications.

Original languageEnglish (US)
Article numbere0182919
JournalPLoS One
Volume12
Issue number8
DOIs
StatePublished - Aug 1 2017

Fingerprint

volunteers
phenology
Volunteers
Databases
Hot Temperature
Rosaceae
Geographic Locations
Amelanchier canadensis
Growth
Natural resources management
buds
frost injury
Plant management
Allergies
Habits
Cluster Analysis
Prunus serotina
heat
Hypersensitivity
Asthma

ASJC Scopus subject areas

  • Medicine(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

USA National Phenology Network’s volunteer-contributed observations yield predictive models of phenological transitions. / Crimmins, Theresa M; Crimmins, Michael; Gerst, Katharine L.; Rosemartin, Alyssa H; Weltzin, Jake F.

In: PLoS One, Vol. 12, No. 8, e0182919, 01.08.2017.

Research output: Contribution to journalArticle

@article{358ccaea8e364060a9cc08a5bfa4e23f,
title = "USA National Phenology Network’s volunteer-contributed observations yield predictive models of phenological transitions",
abstract = "Purpose: In support of science and society, the USA National Phenology Network (USA-NPN) maintains a rapidly growing, continental-scale, species-rich dataset of plant and animal phenology observations that with over 10 million records is the largest such database in the United States. The aim of this study was to explore the potential that exists in the broad and rich volunteer-collected dataset maintained by the USA-NPN for constructing models predicting the timing of phenological transition across species’ ranges within the continental United States. Contributed voluntarily by professional and citizen scientists, these opportunistically collected observations are characterized by spatial clustering, inconsistent spatial and temporal sampling, and short temporal depth (2009-present). Whether data exhibiting such limitations can be used to develop predictive models appropriate for use across large geographic regions has not yet been explored. Methods: We constructed predictive models for phenophases that are the most abundant in the database and also relevant to management applications for all species with available data, regardless of plant growth habit, location, geographic extent, or temporal depth of the observations. We implemented a very basic model formulation—thermal time models with a fixed start date. Results: Sufficient data were available to construct 107 individual species × phenophase models. Remarkably, given the limited temporal depth of this dataset and the simple modeling approach used, fifteen of these models (14{\%}) met our criteria for model fit and error. The majority of these models represented the “breaking leaf buds” and “leaves” phenophases and represented shrub or tree growth forms. Accumulated growing degree day (GDD) thresholds that emerged ranged from 454 GDDs (Amelanchier canadensis-breaking leaf buds) to 1,300 GDDs (Prunus serotina-open flowers). Such candidate thermal time thresholds can be used to produce real-time and short-term forecast maps of the timing of these phenophase transition. In addition, many of the candidate models that emerged were suitable for use across the majority of the species’ geographic ranges. Real-time and forecast maps of phenophase transitions could support a wide range of natural resource management applications, including invasive plant management, issuing asthma and allergy alerts, and anticipating frost damage for crops in vulnerable states. Implications: Our finding that several viable thermal time threshold models that work across the majority of the species ranges could be constructed from the USA-NPN database provides clear evidence that great potential exists this dataset to develop more enhanced predictive models for additional species and phenophases. Further, the candidate models that emerged have immediate utility for supporting a wide range of management applications.",
author = "Crimmins, {Theresa M} and Michael Crimmins and Gerst, {Katharine L.} and Rosemartin, {Alyssa H} and Weltzin, {Jake F.}",
year = "2017",
month = "8",
day = "1",
doi = "10.1371/journal.pone.0182919",
language = "English (US)",
volume = "12",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "8",

}

TY - JOUR

T1 - USA National Phenology Network’s volunteer-contributed observations yield predictive models of phenological transitions

AU - Crimmins, Theresa M

AU - Crimmins, Michael

AU - Gerst, Katharine L.

AU - Rosemartin, Alyssa H

AU - Weltzin, Jake F.

PY - 2017/8/1

Y1 - 2017/8/1

N2 - Purpose: In support of science and society, the USA National Phenology Network (USA-NPN) maintains a rapidly growing, continental-scale, species-rich dataset of plant and animal phenology observations that with over 10 million records is the largest such database in the United States. The aim of this study was to explore the potential that exists in the broad and rich volunteer-collected dataset maintained by the USA-NPN for constructing models predicting the timing of phenological transition across species’ ranges within the continental United States. Contributed voluntarily by professional and citizen scientists, these opportunistically collected observations are characterized by spatial clustering, inconsistent spatial and temporal sampling, and short temporal depth (2009-present). Whether data exhibiting such limitations can be used to develop predictive models appropriate for use across large geographic regions has not yet been explored. Methods: We constructed predictive models for phenophases that are the most abundant in the database and also relevant to management applications for all species with available data, regardless of plant growth habit, location, geographic extent, or temporal depth of the observations. We implemented a very basic model formulation—thermal time models with a fixed start date. Results: Sufficient data were available to construct 107 individual species × phenophase models. Remarkably, given the limited temporal depth of this dataset and the simple modeling approach used, fifteen of these models (14%) met our criteria for model fit and error. The majority of these models represented the “breaking leaf buds” and “leaves” phenophases and represented shrub or tree growth forms. Accumulated growing degree day (GDD) thresholds that emerged ranged from 454 GDDs (Amelanchier canadensis-breaking leaf buds) to 1,300 GDDs (Prunus serotina-open flowers). Such candidate thermal time thresholds can be used to produce real-time and short-term forecast maps of the timing of these phenophase transition. In addition, many of the candidate models that emerged were suitable for use across the majority of the species’ geographic ranges. Real-time and forecast maps of phenophase transitions could support a wide range of natural resource management applications, including invasive plant management, issuing asthma and allergy alerts, and anticipating frost damage for crops in vulnerable states. Implications: Our finding that several viable thermal time threshold models that work across the majority of the species ranges could be constructed from the USA-NPN database provides clear evidence that great potential exists this dataset to develop more enhanced predictive models for additional species and phenophases. Further, the candidate models that emerged have immediate utility for supporting a wide range of management applications.

AB - Purpose: In support of science and society, the USA National Phenology Network (USA-NPN) maintains a rapidly growing, continental-scale, species-rich dataset of plant and animal phenology observations that with over 10 million records is the largest such database in the United States. The aim of this study was to explore the potential that exists in the broad and rich volunteer-collected dataset maintained by the USA-NPN for constructing models predicting the timing of phenological transition across species’ ranges within the continental United States. Contributed voluntarily by professional and citizen scientists, these opportunistically collected observations are characterized by spatial clustering, inconsistent spatial and temporal sampling, and short temporal depth (2009-present). Whether data exhibiting such limitations can be used to develop predictive models appropriate for use across large geographic regions has not yet been explored. Methods: We constructed predictive models for phenophases that are the most abundant in the database and also relevant to management applications for all species with available data, regardless of plant growth habit, location, geographic extent, or temporal depth of the observations. We implemented a very basic model formulation—thermal time models with a fixed start date. Results: Sufficient data were available to construct 107 individual species × phenophase models. Remarkably, given the limited temporal depth of this dataset and the simple modeling approach used, fifteen of these models (14%) met our criteria for model fit and error. The majority of these models represented the “breaking leaf buds” and “leaves” phenophases and represented shrub or tree growth forms. Accumulated growing degree day (GDD) thresholds that emerged ranged from 454 GDDs (Amelanchier canadensis-breaking leaf buds) to 1,300 GDDs (Prunus serotina-open flowers). Such candidate thermal time thresholds can be used to produce real-time and short-term forecast maps of the timing of these phenophase transition. In addition, many of the candidate models that emerged were suitable for use across the majority of the species’ geographic ranges. Real-time and forecast maps of phenophase transitions could support a wide range of natural resource management applications, including invasive plant management, issuing asthma and allergy alerts, and anticipating frost damage for crops in vulnerable states. Implications: Our finding that several viable thermal time threshold models that work across the majority of the species ranges could be constructed from the USA-NPN database provides clear evidence that great potential exists this dataset to develop more enhanced predictive models for additional species and phenophases. Further, the candidate models that emerged have immediate utility for supporting a wide range of management applications.

UR - http://www.scopus.com/inward/record.url?scp=85027842251&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85027842251&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0182919

DO - 10.1371/journal.pone.0182919

M3 - Article

C2 - 28829783

AN - SCOPUS:85027842251

VL - 12

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 8

M1 - e0182919

ER -