Using pedotransfer functions in vadose zone models for estimating groundwater recharge in semiarid regions

Tiejun Wang, Vitaly A. Zlotnik, Jirka Šimunek, Marcel Schaap

Research output: Contribution to journalArticle

45 Citations (Scopus)

Abstract

Process-based vadose zone models are becoming common tools for evaluating spatial distributions of groundwater recharge (GR), but their applications are restricted by complicated parameterizations, especially because of the need for highly nonlinear and spatially variable soil hydraulic characteristics (SHCs). In an attempt to address the scarcity of field SHC data, pedotransfer functions (PTF) were introduced in earlier attempts to estimate SHCs. However, the accuracy of this method is rarely questioned in spite of significant uncertainties of PTF-estimated SHCs. In this study, we investigated the applicability of coupling vadose zone models and PTFs for evaluating GR in sand and loamy sand soils in a semiarid region and also their sensitivity to lower boundary conditions. First, a data set containing measured SHCs was used in the simulations. A second data set contained correlated SHCs drawn from the covariance matrix of the first data set. The third SHC data set used was derived from a widely used PTF. Although standard deviations for individual parameters were known for this PTF, no covariance matrix was available. Hence, we assumed that the parameters of this PTF were uncorrelated, thereby potentially overestimating the volume of the parameter space. Results were summarized using histograms of GR for various sets of input parameters. Under the unit gradient flow lower boundary condition, the distributions of GR for sand and loamy sand significantly overlap. Values of GR based on mean SHCs (or GR*) generally lie off the mode of the GR distribution. This indicates that the routinely used method of taking GR* as a regional representation may not be viable. More importantly, the computed GR largely depends in a nonlinear fashion on the shape factor n in the van Genuchten model. Under the same meteorological conditions, a coarser soil with a larger n generally produces a higher GR. Therefore, the uncertainty in computed GR is largely determined by the uncertainty in estimated n by PTFs (e.g., mean and standard deviation). Under the constant head lower boundary condition, upward soil moisture flux may exist from the lower boundary. Especially for regions with shallow water tables where upward flux exists, choosing an appropriate lower boundary condition is more important than selecting SHC values for calculating GR. The results show that the distribution of GR is less scattered and GR is more intense if the constant head lower boundary is located at deeper depths.

Original languageEnglish (US)
Article numberW04412
JournalWater Resources Research
Volume45
Issue number4
DOIs
StatePublished - Apr 2009

Fingerprint

pedotransfer function
semiarid region
vadose zone
recharge
groundwater
hydraulics
soil
boundary condition
loamy sand
matrix
moisture flux
sand
histogram

ASJC Scopus subject areas

  • Water Science and Technology

Cite this

Using pedotransfer functions in vadose zone models for estimating groundwater recharge in semiarid regions. / Wang, Tiejun; Zlotnik, Vitaly A.; Šimunek, Jirka; Schaap, Marcel.

In: Water Resources Research, Vol. 45, No. 4, W04412, 04.2009.

Research output: Contribution to journalArticle

@article{11818adfe875474d921524539e4a6760,
title = "Using pedotransfer functions in vadose zone models for estimating groundwater recharge in semiarid regions",
abstract = "Process-based vadose zone models are becoming common tools for evaluating spatial distributions of groundwater recharge (GR), but their applications are restricted by complicated parameterizations, especially because of the need for highly nonlinear and spatially variable soil hydraulic characteristics (SHCs). In an attempt to address the scarcity of field SHC data, pedotransfer functions (PTF) were introduced in earlier attempts to estimate SHCs. However, the accuracy of this method is rarely questioned in spite of significant uncertainties of PTF-estimated SHCs. In this study, we investigated the applicability of coupling vadose zone models and PTFs for evaluating GR in sand and loamy sand soils in a semiarid region and also their sensitivity to lower boundary conditions. First, a data set containing measured SHCs was used in the simulations. A second data set contained correlated SHCs drawn from the covariance matrix of the first data set. The third SHC data set used was derived from a widely used PTF. Although standard deviations for individual parameters were known for this PTF, no covariance matrix was available. Hence, we assumed that the parameters of this PTF were uncorrelated, thereby potentially overestimating the volume of the parameter space. Results were summarized using histograms of GR for various sets of input parameters. Under the unit gradient flow lower boundary condition, the distributions of GR for sand and loamy sand significantly overlap. Values of GR based on mean SHCs (or GR*) generally lie off the mode of the GR distribution. This indicates that the routinely used method of taking GR* as a regional representation may not be viable. More importantly, the computed GR largely depends in a nonlinear fashion on the shape factor n in the van Genuchten model. Under the same meteorological conditions, a coarser soil with a larger n generally produces a higher GR. Therefore, the uncertainty in computed GR is largely determined by the uncertainty in estimated n by PTFs (e.g., mean and standard deviation). Under the constant head lower boundary condition, upward soil moisture flux may exist from the lower boundary. Especially for regions with shallow water tables where upward flux exists, choosing an appropriate lower boundary condition is more important than selecting SHC values for calculating GR. The results show that the distribution of GR is less scattered and GR is more intense if the constant head lower boundary is located at deeper depths.",
author = "Tiejun Wang and Zlotnik, {Vitaly A.} and Jirka Šimunek and Marcel Schaap",
year = "2009",
month = "4",
doi = "10.1029/2008WR006903",
language = "English (US)",
volume = "45",
journal = "Water Resources Research",
issn = "0043-1397",
publisher = "American Geophysical Union",
number = "4",

}

TY - JOUR

T1 - Using pedotransfer functions in vadose zone models for estimating groundwater recharge in semiarid regions

AU - Wang, Tiejun

AU - Zlotnik, Vitaly A.

AU - Šimunek, Jirka

AU - Schaap, Marcel

PY - 2009/4

Y1 - 2009/4

N2 - Process-based vadose zone models are becoming common tools for evaluating spatial distributions of groundwater recharge (GR), but their applications are restricted by complicated parameterizations, especially because of the need for highly nonlinear and spatially variable soil hydraulic characteristics (SHCs). In an attempt to address the scarcity of field SHC data, pedotransfer functions (PTF) were introduced in earlier attempts to estimate SHCs. However, the accuracy of this method is rarely questioned in spite of significant uncertainties of PTF-estimated SHCs. In this study, we investigated the applicability of coupling vadose zone models and PTFs for evaluating GR in sand and loamy sand soils in a semiarid region and also their sensitivity to lower boundary conditions. First, a data set containing measured SHCs was used in the simulations. A second data set contained correlated SHCs drawn from the covariance matrix of the first data set. The third SHC data set used was derived from a widely used PTF. Although standard deviations for individual parameters were known for this PTF, no covariance matrix was available. Hence, we assumed that the parameters of this PTF were uncorrelated, thereby potentially overestimating the volume of the parameter space. Results were summarized using histograms of GR for various sets of input parameters. Under the unit gradient flow lower boundary condition, the distributions of GR for sand and loamy sand significantly overlap. Values of GR based on mean SHCs (or GR*) generally lie off the mode of the GR distribution. This indicates that the routinely used method of taking GR* as a regional representation may not be viable. More importantly, the computed GR largely depends in a nonlinear fashion on the shape factor n in the van Genuchten model. Under the same meteorological conditions, a coarser soil with a larger n generally produces a higher GR. Therefore, the uncertainty in computed GR is largely determined by the uncertainty in estimated n by PTFs (e.g., mean and standard deviation). Under the constant head lower boundary condition, upward soil moisture flux may exist from the lower boundary. Especially for regions with shallow water tables where upward flux exists, choosing an appropriate lower boundary condition is more important than selecting SHC values for calculating GR. The results show that the distribution of GR is less scattered and GR is more intense if the constant head lower boundary is located at deeper depths.

AB - Process-based vadose zone models are becoming common tools for evaluating spatial distributions of groundwater recharge (GR), but their applications are restricted by complicated parameterizations, especially because of the need for highly nonlinear and spatially variable soil hydraulic characteristics (SHCs). In an attempt to address the scarcity of field SHC data, pedotransfer functions (PTF) were introduced in earlier attempts to estimate SHCs. However, the accuracy of this method is rarely questioned in spite of significant uncertainties of PTF-estimated SHCs. In this study, we investigated the applicability of coupling vadose zone models and PTFs for evaluating GR in sand and loamy sand soils in a semiarid region and also their sensitivity to lower boundary conditions. First, a data set containing measured SHCs was used in the simulations. A second data set contained correlated SHCs drawn from the covariance matrix of the first data set. The third SHC data set used was derived from a widely used PTF. Although standard deviations for individual parameters were known for this PTF, no covariance matrix was available. Hence, we assumed that the parameters of this PTF were uncorrelated, thereby potentially overestimating the volume of the parameter space. Results were summarized using histograms of GR for various sets of input parameters. Under the unit gradient flow lower boundary condition, the distributions of GR for sand and loamy sand significantly overlap. Values of GR based on mean SHCs (or GR*) generally lie off the mode of the GR distribution. This indicates that the routinely used method of taking GR* as a regional representation may not be viable. More importantly, the computed GR largely depends in a nonlinear fashion on the shape factor n in the van Genuchten model. Under the same meteorological conditions, a coarser soil with a larger n generally produces a higher GR. Therefore, the uncertainty in computed GR is largely determined by the uncertainty in estimated n by PTFs (e.g., mean and standard deviation). Under the constant head lower boundary condition, upward soil moisture flux may exist from the lower boundary. Especially for regions with shallow water tables where upward flux exists, choosing an appropriate lower boundary condition is more important than selecting SHC values for calculating GR. The results show that the distribution of GR is less scattered and GR is more intense if the constant head lower boundary is located at deeper depths.

UR - http://www.scopus.com/inward/record.url?scp=67649865632&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67649865632&partnerID=8YFLogxK

U2 - 10.1029/2008WR006903

DO - 10.1029/2008WR006903

M3 - Article

AN - SCOPUS:67649865632

VL - 45

JO - Water Resources Research

JF - Water Resources Research

SN - 0043-1397

IS - 4

M1 - W04412

ER -