| Vus | from K3 decay and four-flavor lattice QCD

(Fermilab Lattice and MILC Collaborations)

Research output: Contribution to journalArticle

Abstract

Using highly improved staggered quark (HISQ) Nf=2+1+1 MILC ensembles with five different values of the lattice spacing, including four ensembles with physical quark masses, we perform the most precise computation to date of the K→πν vector form factor at zero momentum transfer, f+K0π-(0)=0.9696(15)stat(12)syst. This is the first calculation that includes the dominant finite-volume effects, as calculated in chiral perturbation theory at next-to-leading order. Our result for the form factor provides a direct determination of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |Vus|=0.22333(44)f+(0)(42)exp, with a theory error that is, for the first time, at the same level as the experimental error. The uncertainty of the semileptonic determination is now similar to that from leptonic decays and the ratio fK+/fπ+, which uses |Vud| as input. Our value of |Vus| is in tension at the 2-2.6σ level both with the determinations from leptonic decays and with the unitarity of the CKM matrix. In the test of CKM unitarity in the first row, the current limiting factor is the error in |Vud|, although a recent determination of the nucleus-independent radiative corrections to superallowed nuclear β decays could reduce the |Vud|2 uncertainty nearly to that of |Vus|2. Alternative unitarity tests using only kaon decays, for which improvements in the theory and experimental inputs are likely in the next few years, reveal similar tensions and could be further improved by taking correlations between the theory inputs. As part of our analysis, we calculated the correction to f+Kπ(0) due to nonequilibrated topological charge at leading order in chiral perturbation theory, for both the full-QCD and the partially quenched cases. We also obtain the combination of low-energy constants in the chiral effective Lagrangian [C12r+C34r-(L5r)2](Mρ)=(2.92±0.31)×10-6.

Original languageEnglish (US)
Article number114509
JournalPhysical Review D
Volume99
Issue number11
DOIs
StatePublished - Jun 24 2019

Fingerprint

quantum chromodynamics
decay
form factors
perturbation theory
quarks
matrices
momentum transfer
spacing
nuclei
energy

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Cite this

(Fermilab Lattice and MILC Collaborations) (2019). | Vus | from K3 decay and four-flavor lattice QCD. Physical Review D, 99(11), [114509]. https://doi.org/10.1103/PhysRevD.99.114509

| Vus | from K3 decay and four-flavor lattice QCD. / (Fermilab Lattice and MILC Collaborations).

In: Physical Review D, Vol. 99, No. 11, 114509, 24.06.2019.

Research output: Contribution to journalArticle

(Fermilab Lattice and MILC Collaborations) 2019, '| Vus | from K3 decay and four-flavor lattice QCD', Physical Review D, vol. 99, no. 11, 114509. https://doi.org/10.1103/PhysRevD.99.114509
(Fermilab Lattice and MILC Collaborations). | Vus | from K3 decay and four-flavor lattice QCD. Physical Review D. 2019 Jun 24;99(11). 114509. https://doi.org/10.1103/PhysRevD.99.114509
(Fermilab Lattice and MILC Collaborations). / | Vus | from K3 decay and four-flavor lattice QCD. In: Physical Review D. 2019 ; Vol. 99, No. 11.
@article{334ab5e78b404841bdb06e99cdca87f5,
title = "| Vus | from K3 decay and four-flavor lattice QCD",
abstract = "Using highly improved staggered quark (HISQ) Nf=2+1+1 MILC ensembles with five different values of the lattice spacing, including four ensembles with physical quark masses, we perform the most precise computation to date of the K→πν vector form factor at zero momentum transfer, f+K0π-(0)=0.9696(15)stat(12)syst. This is the first calculation that includes the dominant finite-volume effects, as calculated in chiral perturbation theory at next-to-leading order. Our result for the form factor provides a direct determination of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |Vus|=0.22333(44)f+(0)(42)exp, with a theory error that is, for the first time, at the same level as the experimental error. The uncertainty of the semileptonic determination is now similar to that from leptonic decays and the ratio fK+/fπ+, which uses |Vud| as input. Our value of |Vus| is in tension at the 2-2.6σ level both with the determinations from leptonic decays and with the unitarity of the CKM matrix. In the test of CKM unitarity in the first row, the current limiting factor is the error in |Vud|, although a recent determination of the nucleus-independent radiative corrections to superallowed nuclear β decays could reduce the |Vud|2 uncertainty nearly to that of |Vus|2. Alternative unitarity tests using only kaon decays, for which improvements in the theory and experimental inputs are likely in the next few years, reveal similar tensions and could be further improved by taking correlations between the theory inputs. As part of our analysis, we calculated the correction to f+Kπ(0) due to nonequilibrated topological charge at leading order in chiral perturbation theory, for both the full-QCD and the partially quenched cases. We also obtain the combination of low-energy constants in the chiral effective Lagrangian [C12r+C34r-(L5r)2](Mρ)=(2.92±0.31)×10-6.",
author = "{(Fermilab Lattice and MILC Collaborations)} and A. Bazavov and C. Bernard and C. Detar and Daping Du and El-Khadra, {A. X.} and Freeland, {E. D.} and E. G{\'a}miz and Steven Gottlieb and Heller, {U. M.} and J. Komijani and Kronfeld, {A. S.} and J. Laiho and Mackenzie, {P. B.} and Neil, {E. T.} and T. Primer and Simone, {J. N.} and R. Sugar and Toussaint, {William D} and {Van De Water}, {R. S.}",
year = "2019",
month = "6",
day = "24",
doi = "10.1103/PhysRevD.99.114509",
language = "English (US)",
volume = "99",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "American Physical Society",
number = "11",

}

TY - JOUR

T1 - | Vus | from K3 decay and four-flavor lattice QCD

AU - (Fermilab Lattice and MILC Collaborations)

AU - Bazavov, A.

AU - Bernard, C.

AU - Detar, C.

AU - Du, Daping

AU - El-Khadra, A. X.

AU - Freeland, E. D.

AU - Gámiz, E.

AU - Gottlieb, Steven

AU - Heller, U. M.

AU - Komijani, J.

AU - Kronfeld, A. S.

AU - Laiho, J.

AU - Mackenzie, P. B.

AU - Neil, E. T.

AU - Primer, T.

AU - Simone, J. N.

AU - Sugar, R.

AU - Toussaint, William D

AU - Van De Water, R. S.

PY - 2019/6/24

Y1 - 2019/6/24

N2 - Using highly improved staggered quark (HISQ) Nf=2+1+1 MILC ensembles with five different values of the lattice spacing, including four ensembles with physical quark masses, we perform the most precise computation to date of the K→πν vector form factor at zero momentum transfer, f+K0π-(0)=0.9696(15)stat(12)syst. This is the first calculation that includes the dominant finite-volume effects, as calculated in chiral perturbation theory at next-to-leading order. Our result for the form factor provides a direct determination of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |Vus|=0.22333(44)f+(0)(42)exp, with a theory error that is, for the first time, at the same level as the experimental error. The uncertainty of the semileptonic determination is now similar to that from leptonic decays and the ratio fK+/fπ+, which uses |Vud| as input. Our value of |Vus| is in tension at the 2-2.6σ level both with the determinations from leptonic decays and with the unitarity of the CKM matrix. In the test of CKM unitarity in the first row, the current limiting factor is the error in |Vud|, although a recent determination of the nucleus-independent radiative corrections to superallowed nuclear β decays could reduce the |Vud|2 uncertainty nearly to that of |Vus|2. Alternative unitarity tests using only kaon decays, for which improvements in the theory and experimental inputs are likely in the next few years, reveal similar tensions and could be further improved by taking correlations between the theory inputs. As part of our analysis, we calculated the correction to f+Kπ(0) due to nonequilibrated topological charge at leading order in chiral perturbation theory, for both the full-QCD and the partially quenched cases. We also obtain the combination of low-energy constants in the chiral effective Lagrangian [C12r+C34r-(L5r)2](Mρ)=(2.92±0.31)×10-6.

AB - Using highly improved staggered quark (HISQ) Nf=2+1+1 MILC ensembles with five different values of the lattice spacing, including four ensembles with physical quark masses, we perform the most precise computation to date of the K→πν vector form factor at zero momentum transfer, f+K0π-(0)=0.9696(15)stat(12)syst. This is the first calculation that includes the dominant finite-volume effects, as calculated in chiral perturbation theory at next-to-leading order. Our result for the form factor provides a direct determination of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |Vus|=0.22333(44)f+(0)(42)exp, with a theory error that is, for the first time, at the same level as the experimental error. The uncertainty of the semileptonic determination is now similar to that from leptonic decays and the ratio fK+/fπ+, which uses |Vud| as input. Our value of |Vus| is in tension at the 2-2.6σ level both with the determinations from leptonic decays and with the unitarity of the CKM matrix. In the test of CKM unitarity in the first row, the current limiting factor is the error in |Vud|, although a recent determination of the nucleus-independent radiative corrections to superallowed nuclear β decays could reduce the |Vud|2 uncertainty nearly to that of |Vus|2. Alternative unitarity tests using only kaon decays, for which improvements in the theory and experimental inputs are likely in the next few years, reveal similar tensions and could be further improved by taking correlations between the theory inputs. As part of our analysis, we calculated the correction to f+Kπ(0) due to nonequilibrated topological charge at leading order in chiral perturbation theory, for both the full-QCD and the partially quenched cases. We also obtain the combination of low-energy constants in the chiral effective Lagrangian [C12r+C34r-(L5r)2](Mρ)=(2.92±0.31)×10-6.

UR - http://www.scopus.com/inward/record.url?scp=85068618387&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85068618387&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.99.114509

DO - 10.1103/PhysRevD.99.114509

M3 - Article

VL - 99

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 11

M1 - 114509

ER -