Weathering of meteorites from Oman: Correlation of chemical and mineralogical weathering proxies 14C terrestrial ages and the influence of soil chemistry

A. Al-Kathiri, B. A. Hofmann, A. J.T. Jull, E. Gnos

Research output: Contribution to journalArticlepeer-review

83 Scopus citations


Fifty-four fragments of ordinary chondrites from 50 finds representing all searched areas in central Oman and all weathering stages were selected to compare the physical, chemical, and mineralogical effect of terrestrial weathering with 14C terrestrial ages. 14C ages range from 2.0 to >49 kyr with a median value of 17.9 kyr. The peak of the age range, which is between 10-20 kyr, falls in an arid climate period. A comparison of the chemical composition of Omani chondrites with literature data for unweathered H and L chondrites demonstrates a strong enrichment in Sr and Ba, and depletion in S during weathering. Water contents in H chondrites increase with terrestrial age, whereas L chondrites show a rapid initial increase followed by nearly constant water content. Correlating Sr, Ba, and H2O with age indicates two absorption trends: i) an initial alteration within the first 20 kyr dominated by H2O uptake, mainly reflecting Fe-Ni metal alteration, and ii) a second Ba-and Sr-dominated stage correlated with slower and less systematic weathering of troilite that starts after H2O reaches ∼2 wt%. Sulfur released from troilite partly combines with Ba and Sr to form sulfate minerals. Other parameters correlated with 14C age are degree of weathering, color of powdered meteorites, and the Ni/Fe ratio. Chemical analyses of 145 soils show a high degree of homogeneity over the entire interior Oman Desert, indicating large-scale mixing by wind. Soil samples collected from beneath meteorite finds typically are enriched in Ni and Co, confirming mobilization from the meteorites. High Cr and Ni concentrations in reference soil samples, which decrease from NE to SW, are due to detrital material from ultramafic rocks of the Oman Mountains.

Original languageEnglish (US)
Pages (from-to)1215-1239
Number of pages25
JournalMeteoritics and Planetary Science
Issue number8
StatePublished - Aug 2005

ASJC Scopus subject areas

  • Geophysics
  • Space and Planetary Science


Dive into the research topics of 'Weathering of meteorites from Oman: Correlation of chemical and mineralogical weathering proxies <sup>14</sup>C terrestrial ages and the influence of soil chemistry'. Together they form a unique fingerprint.

Cite this