Winter production of CO2 and N2O from alpine tundra: Environmental controls and relationship to inter-system C and N fluxes

Paul Brooks, Steven K. Schmidt, Mark W. Williams

Research output: Contribution to journalArticle

235 Citations (Scopus)

Abstract

Fluxes of CO2 and N2O were measured from both natural and experimentally augmented snowpacks during the winters of 1993 and 1994 on Niwot Ridge in the Colorado Front Range. Consistent snow cover insulated the soil surface from extreme air temperatures and allowed heterotrophic activity to continue through much of the winter. In contrast, soil remained frozen at sites with inconsistent snow cover and production did not begin until snowmelt. Fluxes were measured when soil temperatures under the snow ranged from 5°C to 0°C, but there was no significant relationship between flux for either gas and temperature within this range. While early developing snowpacks resulted in warmer minimum soil temperatures allowing production to continue for most of the winter, the highest CO2 fluxes were recorded at sites which experienced a hard freeze before a consistent snowpack developed. Consequently, the seasonal flux of CO2-C from snow covered soils was related both to the severity of freeze and the duration of snow cover. Over-winter CO2-C loss ranged from 0.3 g C m-2 season-1 at sites characterized by inconsistent snow cover to 25.7 g C m-2 season-1 at sites that experienced a hard freeze followed by an extended period of snow cover. In contrast to the pattern observed with C loss, a hard freeze early in the winter did not result in greater N2O-N loss. Both mean daily N2O fluxes and the total over-winter N2O-N loss were related to the length of time soils were covered by a consistent snowpack. Over-winter N20-N loss ranged from less 0.23 mg N m-2 from the latest developing, short duration snowpacks to 16.90 mg N m-2 from sites with early snow cover. These data suggest that over-winter heterotrophic activity in snow-covered soil has the potential to mineralize from less than 1% to greater than 25% of the carbon fixed in ANPP, while over-winter N2O fluxes range from less than half to an order of magnitude higher than growing season fluxes. The variability in these fluxes suggests that small changes in climate which affect the timing of seasonal snow cover may have a large effect on C and N cycling in these environments.

Original languageEnglish (US)
Pages (from-to)403-413
Number of pages11
JournalOecologia
Volume110
Issue number3
DOIs
StatePublished - Apr 2 1997
Externally publishedYes

Fingerprint

alpine tundra
snowpack
tundra
snow cover
carbon dioxide
winter
snow
soil temperature
soil
environmental control
snowmelt
frozen soils
duration
soil surface
growing season
air temperature
loss

Keywords

  • Carbon dioxide
  • Nitrous oxide
  • Snow cover
  • Trace gas flux

ASJC Scopus subject areas

  • Ecology

Cite this

Winter production of CO2 and N2O from alpine tundra : Environmental controls and relationship to inter-system C and N fluxes. / Brooks, Paul; Schmidt, Steven K.; Williams, Mark W.

In: Oecologia, Vol. 110, No. 3, 02.04.1997, p. 403-413.

Research output: Contribution to journalArticle

@article{7b284e7188514c00ba861dfee9658670,
title = "Winter production of CO2 and N2O from alpine tundra: Environmental controls and relationship to inter-system C and N fluxes",
abstract = "Fluxes of CO2 and N2O were measured from both natural and experimentally augmented snowpacks during the winters of 1993 and 1994 on Niwot Ridge in the Colorado Front Range. Consistent snow cover insulated the soil surface from extreme air temperatures and allowed heterotrophic activity to continue through much of the winter. In contrast, soil remained frozen at sites with inconsistent snow cover and production did not begin until snowmelt. Fluxes were measured when soil temperatures under the snow ranged from 5°C to 0°C, but there was no significant relationship between flux for either gas and temperature within this range. While early developing snowpacks resulted in warmer minimum soil temperatures allowing production to continue for most of the winter, the highest CO2 fluxes were recorded at sites which experienced a hard freeze before a consistent snowpack developed. Consequently, the seasonal flux of CO2-C from snow covered soils was related both to the severity of freeze and the duration of snow cover. Over-winter CO2-C loss ranged from 0.3 g C m-2 season-1 at sites characterized by inconsistent snow cover to 25.7 g C m-2 season-1 at sites that experienced a hard freeze followed by an extended period of snow cover. In contrast to the pattern observed with C loss, a hard freeze early in the winter did not result in greater N2O-N loss. Both mean daily N2O fluxes and the total over-winter N2O-N loss were related to the length of time soils were covered by a consistent snowpack. Over-winter N20-N loss ranged from less 0.23 mg N m-2 from the latest developing, short duration snowpacks to 16.90 mg N m-2 from sites with early snow cover. These data suggest that over-winter heterotrophic activity in snow-covered soil has the potential to mineralize from less than 1{\%} to greater than 25{\%} of the carbon fixed in ANPP, while over-winter N2O fluxes range from less than half to an order of magnitude higher than growing season fluxes. The variability in these fluxes suggests that small changes in climate which affect the timing of seasonal snow cover may have a large effect on C and N cycling in these environments.",
keywords = "Carbon dioxide, Nitrous oxide, Snow cover, Trace gas flux",
author = "Paul Brooks and Schmidt, {Steven K.} and Williams, {Mark W.}",
year = "1997",
month = "4",
day = "2",
doi = "10.1007/s004420050175",
language = "English (US)",
volume = "110",
pages = "403--413",
journal = "Oecologia",
issn = "0029-8549",
publisher = "Springer Verlag",
number = "3",

}

TY - JOUR

T1 - Winter production of CO2 and N2O from alpine tundra

T2 - Environmental controls and relationship to inter-system C and N fluxes

AU - Brooks, Paul

AU - Schmidt, Steven K.

AU - Williams, Mark W.

PY - 1997/4/2

Y1 - 1997/4/2

N2 - Fluxes of CO2 and N2O were measured from both natural and experimentally augmented snowpacks during the winters of 1993 and 1994 on Niwot Ridge in the Colorado Front Range. Consistent snow cover insulated the soil surface from extreme air temperatures and allowed heterotrophic activity to continue through much of the winter. In contrast, soil remained frozen at sites with inconsistent snow cover and production did not begin until snowmelt. Fluxes were measured when soil temperatures under the snow ranged from 5°C to 0°C, but there was no significant relationship between flux for either gas and temperature within this range. While early developing snowpacks resulted in warmer minimum soil temperatures allowing production to continue for most of the winter, the highest CO2 fluxes were recorded at sites which experienced a hard freeze before a consistent snowpack developed. Consequently, the seasonal flux of CO2-C from snow covered soils was related both to the severity of freeze and the duration of snow cover. Over-winter CO2-C loss ranged from 0.3 g C m-2 season-1 at sites characterized by inconsistent snow cover to 25.7 g C m-2 season-1 at sites that experienced a hard freeze followed by an extended period of snow cover. In contrast to the pattern observed with C loss, a hard freeze early in the winter did not result in greater N2O-N loss. Both mean daily N2O fluxes and the total over-winter N2O-N loss were related to the length of time soils were covered by a consistent snowpack. Over-winter N20-N loss ranged from less 0.23 mg N m-2 from the latest developing, short duration snowpacks to 16.90 mg N m-2 from sites with early snow cover. These data suggest that over-winter heterotrophic activity in snow-covered soil has the potential to mineralize from less than 1% to greater than 25% of the carbon fixed in ANPP, while over-winter N2O fluxes range from less than half to an order of magnitude higher than growing season fluxes. The variability in these fluxes suggests that small changes in climate which affect the timing of seasonal snow cover may have a large effect on C and N cycling in these environments.

AB - Fluxes of CO2 and N2O were measured from both natural and experimentally augmented snowpacks during the winters of 1993 and 1994 on Niwot Ridge in the Colorado Front Range. Consistent snow cover insulated the soil surface from extreme air temperatures and allowed heterotrophic activity to continue through much of the winter. In contrast, soil remained frozen at sites with inconsistent snow cover and production did not begin until snowmelt. Fluxes were measured when soil temperatures under the snow ranged from 5°C to 0°C, but there was no significant relationship between flux for either gas and temperature within this range. While early developing snowpacks resulted in warmer minimum soil temperatures allowing production to continue for most of the winter, the highest CO2 fluxes were recorded at sites which experienced a hard freeze before a consistent snowpack developed. Consequently, the seasonal flux of CO2-C from snow covered soils was related both to the severity of freeze and the duration of snow cover. Over-winter CO2-C loss ranged from 0.3 g C m-2 season-1 at sites characterized by inconsistent snow cover to 25.7 g C m-2 season-1 at sites that experienced a hard freeze followed by an extended period of snow cover. In contrast to the pattern observed with C loss, a hard freeze early in the winter did not result in greater N2O-N loss. Both mean daily N2O fluxes and the total over-winter N2O-N loss were related to the length of time soils were covered by a consistent snowpack. Over-winter N20-N loss ranged from less 0.23 mg N m-2 from the latest developing, short duration snowpacks to 16.90 mg N m-2 from sites with early snow cover. These data suggest that over-winter heterotrophic activity in snow-covered soil has the potential to mineralize from less than 1% to greater than 25% of the carbon fixed in ANPP, while over-winter N2O fluxes range from less than half to an order of magnitude higher than growing season fluxes. The variability in these fluxes suggests that small changes in climate which affect the timing of seasonal snow cover may have a large effect on C and N cycling in these environments.

KW - Carbon dioxide

KW - Nitrous oxide

KW - Snow cover

KW - Trace gas flux

UR - http://www.scopus.com/inward/record.url?scp=0030889026&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030889026&partnerID=8YFLogxK

U2 - 10.1007/s004420050175

DO - 10.1007/s004420050175

M3 - Article

AN - SCOPUS:0030889026

VL - 110

SP - 403

EP - 413

JO - Oecologia

JF - Oecologia

SN - 0029-8549

IS - 3

ER -