Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating

Peter W. Reiners, Terry L. Spell, Stefan Nicolescu, Kathleen A. Zanetti

Research output: Contribution to journalArticle

442 Scopus citations


(U-Th)/He chronometry of zircon has a wide range of potential applications including thermochronometry, provided the temperature sensitivity (e.g., closure temperature) of the system be accurately constrained. We have examined the characteristics of He loss from zircon in a series of step-heating diffusion experiments, and compared zircon (U-Th)/He ages with other thermochronometric constraints from plutonic rocks. Diffusion experiments on zircons with varying ages and U-Th contents yield Arrhenius relationships which, after about 5% He release, indicate Ea = 163-173 kJ/mol (39-41 kcal/mol), and D0 = 0.09-1.5 cm2/s, with an average Ea of 169 ± 3.8 kJ/mol (40.4 ± 0.9 kcal/mol) and average D0 of 0.46+0.87-0.30 cm2/s. The experiments also suggest a correspondence between diffusion domain size and grain size. For effective grain radius of 60 μm and cooling rate of 10°C/myr, the diffusion data yield closure temperatures, Tc, of 171-196°C, with an average of 183°C. The early stages of step heating experiments show complications in the form of decreasing apparent diffusivity with successive heating steps, but these are essentially absent in later stages, after about 5-10% He release. These effects are independent of radiation dosage and are also unlikely to be due to intracrystalline He zonation. Regardless of the physical origin, this non-Arrhenius behavior is similar to predictions based on degassing of multiple diffusion domains, with only a small proportion (<2-4%) of gas residing in domains with a lower diffusivity than the bulk zircon crystal. Thus the features of zircon responsible for these non-Arrhenius trends in the early stages of diffusion experiments would have a negligible effect on the bulk thermal sensitivity and closure temperature of a zircon crystal. We have also measured single-grain zircon (U-Th)/He ages and obtained 40Ar/39Ar ages for several minerals, including K-feldspar, for a suite of slowly cooled samples with other thermochronologic constraints. Zircon He ages from most samples have 1 σ reproducibilities of about 1-5%, and agree well with K-feldspar 40Ar/39Ar multidomain cooling models for sample-specific closure temperatures (170-189°C). One sample has a relatively poor reproducibility of ∼24%, however, and a mean that falls to older ages than predicted by the K-feldspar model. Microimaging shows that trace element zonation of a variety of styles is most pronounced in this sample, which probably leads to poor reproducibility via inaccurate α-ejection corrections. We present preliminary results of a new method for characterizing U-Th zonation in dated grains by laser-ablation, which significantly improves zircon He age accuracy. In summary, the zircon (U-Th)/He thermochronometer has a closure temperature of 170-190°C for typical plutonic cooling rates and crystal sizes, it is not significantly affected by radiation damage except in relatively rare cases of high radiation dosage with long-term low-temperature histories, and most ages agree well with constraints provided by K-spar 40Ar/39Ar cooling models. In some cases, intracrystalline U-Th zonation can result in inaccurate ages, but depth-profiling characterization of zonation in dated grains can significantly improve accuracy and precision of single-grain ages.

Original languageEnglish (US)
Pages (from-to)1857-1887
Number of pages31
JournalGeochimica et Cosmochimica Acta
Issue number8
StatePublished - Apr 15 2004
Externally publishedYes

ASJC Scopus subject areas

  • Geochemistry and Petrology

Fingerprint Dive into the research topics of 'Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with <sup>40</sup>Ar/<sup>39</sup>Ar dating'. Together they form a unique fingerprint.

  • Cite this